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1. Introduction

In recent years there has been considerable interest in defining string theory on various

“duality-folds” [1 – 15]. These backgrounds differ from ordinary manifolds because field

configurations on overlapping coordinate patches can be glued together using duality trans-

formations, as well as the conventional diffeomorphisms and gauge transformations. Of

particular interest are backgrounds involving the T-duality group of transformations; these

are known as “T-folds” [1]. These backgrounds are n-torus fibrations over some base,

where the fibre undergoes monodromy transformations in the T-duality group O(n, n; Z)

around certain cycles in the base. T-folds are therefore fibre bundles with structure group

O(n, n; Z). A key feature of T-folds is that, unlike manifolds, they do not possess a globally

well-defined metric. This is because T-duality transformations mix up the metric and B-
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field components. Nevertheless, sensible supergravity compactifications (typically using the

Scherk-Schwarz ansatze [16, 17]) can be defined on these backgrounds [4, 6, 8 – 10, 18, 19].

In this paper we will be interested in the world-sheet description of T-folds. In par-

ticular, we will use a framework introduced by Hull known as the “doubled torus” formal-

ism [1]. Essentially, the idea is to double the dimension of the T n fibre, and consider the

T-fold as a 2n-dimensional torus fibration over the same base. Such ideas have also been

implemented in earlier works, for example in refs. [20, 21]. The extra n dimensions are

associated to the T-dual coordinates, X̃ = XL − XR. By enlarging the fibre in this way,

the monodromy transformations in O(n, n; Z) act linearly. Moreover, since O(n, n; Z) is

a subgroup of Gl(2n, Z), which is the group of large diffeomorphisms of T 2n, T-folds are

geometric backgrounds from the doubled torus perspective. Physically speaking, one can

think of the doubled torus as the set of all possible T-duals of a given T-fold [1].

Now, since the dimension of the fibre has been doubled, one must impose constraints

to halve the number of physical degrees of freedom in order to make contact with critical

string theory. In ref. [1] covariant constraints with the right properties are introduced.

Therefore, the doubled torus model consists of a world-sheet Lagrangian, together with

some constraints. These constraints can be imposed in a number of ways. One way is to

solve the constraints and re-write everything in terms of the physical degrees of freedom.

Using this approach Hull [1] shows that classically this leads to the conventional non-

doubled formulation. In particular, by solving the constraints and using them in the

doubled torus equations of motion, one arrives at equations of motion for a sigma model

on the non-doubled torus, T n. Furthermore, by choosing different “polarizations” for the

physical coordinates one can obtain sigma models related to the original one by T-duality.

In particular, the Buscher rules for the transformation of the metric and B-field under

T-duality can be recovered.

Our approach will be to investigate the doubled torus formalism as a constrained

Hamiltonian system. In particular, we will not solve the constraints, but rather we will

impose them on our Hamiltonian, and then move to Dirac brackets in order to quantize on

the constrained surface. The first aim of this paper is to investigate whether the doubled

torus system is equivalent quantum mechanically to the more conventional non-doubled

torus.

One hope is that the doubled torus formalism might be somewhat simpler quantum

mechanically than the non-doubled torus. In the conventional formalism it is well known

that understanding T-folds quantum mechanically involves the study of asymmetric orb-

ifolds, which are non-trivial (see for example, refs. [11, 15, 22, 23]). However, since T-folds

are geometric backgrounds from the doubled torus perspective, one might expect that

there are no asymmetric orbifolds to deal with. This does not turn out to be the case. In

fact, we recover exactly the same (asymmetric) orbifolds and partition functions as in the

conventional case, even though the steps along the way are somewhat different.

The second aim of this paper is to find the supersymmetric version of the doubled

torus model. Although there is much work on supersymmetric sigma models [24 – 28], in

this case one has to also consider how to make the constraints supersymmetric. We will

construct a consistent supersymmetric Lagrangian with suitable constraints.
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The plan of this paper is as follows. Firstly, in section 2 we review the work of

ref. [1]. Then in section 2.2 we move to the Hamiltonian formulation and determine the

class of constraints we are dealing with. After establishing that the constraints are second

class we move to Dirac brackets. Since the Dirac brackets are very simple we are able to

quantize canonically, without invoking BRST quantization (which would involve making

our constraints first class), or other more complicated methods. To actually perform the

quantization we consider a very simple T-fold in section 3 from the doubled perspective.

Our quantization takes place on the constrained surface, which is a surface in phase space.

An attractive feature of our analysis is that it does not require a choice of polarization to

be made. We calculate all the quantum mechanical ingredients such as Virasoro operators,

the Hilbert space, the partition function and so on, and compare to the non-doubled

results. In section 4 we give our results for a supersymmetric version of the doubled torus

formalism, including the supersymmetrized constraint. In section 5 we discuss our results

and conclude.

Note added: After our paper first appeared on the archive, a new paper by C. Hull [29]

appeared which discusses important aspects of the doubled torus formalism. These include

the quantum equivalence to the usual formulation, arbitrary genus worldsheets and the

dilaton. The method of quantization involves gauging half of the currents, and is different

to the method used here.

2. Bosonic theory and constraint analysis

We begin by considering the doubled torus system defined by Hull in ref. [1]. This is a

constrained Lagrangian system, where the degrees of freedom on the fibre are doubled;

constraints are then imposed to reduce these degrees of freedom to the correct physical

number. We will analyse this setup as a constrained Hamiltonian system. This will lead

to a natural quantization in terms of Dirac brackets.

2.1 Review of doubled torus formulation

In this section we review the doubled torus construction for T-folds. The starting point

is to consider a sigma model, defined by embedding coordinates (XI , Y m) which map

the world-sheet into the target space. Locally, the target space takes the form N × T 2n,

where T 2n is the doubled torus. Globally, however, the target space is a T 2n fibre bundle

over N , with structure group O(n, n; Z). The embedding coordinates XI are associated to

T 2n, hence we have the periodicity conditions1 XI ∼ XI + 2π, where I = 1, . . . , 2n. The

coordinates Y m are associated to the base, so m = 0, 1, . . . , 26 − n. Our total number of

dimensions is 26 + n, but n of these will be unphysical.

The data on the target space consists of a generalised metric, HIJ , and source terms,

JI , on T 2n, together with a metric, Gmn, and B-field, Bmn, on the base. The following

Lagrangian can be constructed for this system [1],

L =
1

2
HIJ(Y )P I ∧ ?P J + P I ∧ ?JI(Y ) + L(Y ) (2.1)

1This does not mean that all radii in the T 2n are equal, but rather the radii will enter in the metric HIJ
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where P I = dXI , and d, ∧ and ? are all operations on the worldsheet. The Lagrangian on

the base space, L(Y ), can be taken to have the following general form,

L(Y ) =
1

2
GmndY m ∧ ?dY n +

1

2
BmndY m ∧ dY n

while the source terms can be expressed in the following natural way, JI = AIndY n + ÃIn ?

dY n. Then the Lagrangian is

L =
1

2
HIJ∂aX

I∂bX
Jηab + AIn∂aX

I∂bY
nηab − ÃIn∂aX

I∂bY
nεab

+
1

2
Gmn∂aY

m∂bY
nηab − 1

2
Bmn∂aY

m∂bY
nεab (2.2)

where σa,b = τ, σ are the world-sheet coordinates, η = diag(+1,−1) is the flat world-sheet

metric and ε01 = +1. All fields in the above Lagrangian are assumed to depend on the

base coordinates, Y m, in general.

By varying XI one obtains the following equation of motion,

d ? (HP + J) = 0 (2.3)

This can be written more explicitly as

ηab∂a(HIJ∂bX
J + AIn∂bY

n) − εab∂mÃIn∂aY
m∂bY

n = 0

Physical solutions of this equation should also satisfy the following constraint (which is

really n constraints), which halves the number of physical degrees of freedom

?P I = SI
JP J + LIJJJ (2.4)

where LIJ is a constant O(n, n) invariant metric2 and SI
J ≡ LIKHKJ . In the next section

we will see precisely why this constraint halves the number of degrees of freedom. First,

however, we see that for the consistency of the constraint one must have S2 = 1 and

SL ? J = −LJ . This restricts the form of HIJ and implies

AIn = −HIJLJKÃKn (2.5)

for the constituents A, Ã of the source term JI .

An important feature of the doubled torus system is that it is invariant under O(n, n;

Z). Suppose we consider a global O(n, n) transformation, M (which must satisfy MT LM =

L), then X,H, J transform as follows,

X → MX

H → (M−1)T HM−1

J → (M−1)T J (2.6)

2O(n, n) matrices M must therefore satisfy MT LM = L.
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Hence the Lagrangian (2.1) and constraint (2.4) remain invariant under the continuous

group O(n, n). However, only the discrete subgroup O(n, n; Z) will leave the lattice for XI

invariant.

To make contact with the conventional formulation of bosonic strings on T n, one must

divide the coordinates on T 2n into n physical coordinates, Xi ∈ T n, and n dual coordinates,

X̃i ∈ T̃ n. This is referred to as a “choice of polarization”. In group theoretic language, we

are decomposing O(n, n) into representations of GL(n). In particular, the 2n-dimensional

representation of O(n, n) decomposes as 2n → n + n′, where n and n′ are the fundamental

and anti-fundamental representations of GL(n). This decomposition can be implemented

in a geometric way by the following 2n × 2n matrix [1],

Π =

(

Πi
I

Π̃iI

)

where upper i indices correspond to the n representation, and lower i indices correspond to

n′. The physical subspace T n must be a null subspace with respect to the constant O(n, n)

metric L, i.e.

Πi
IΠ

j
JLIJ = Π̃iIΠ̃jJLIJ = 0

Also,

Πi
IΠ̃iJ + Π̃iIΠ

i
J = LIJ

In terms of the GL(n) basis, LIJ can always be taken to be

LIJ =

(

0 1n×n

1n×n 0

)

(2.7)

which gives the natural metric ds2
L = 2dXidX̃i. Moreover, in a certain gauge [1] the metric

HIJ can be chosen to take the conventional form for a O(n, n)/O(n) × O(n) coset metric,

namely

H =

(

G − BG−1B BG−1

−G−1B G−1

)

(2.8)

where G and B are the metric and B-field on T n. Notice that if we take L and H as above

then S2 = 1 automatically, and also TrS = 0.

The distinguishing feature of T-folds, compared to ordinary manifolds, is that in gen-

eral no global polarization, Π, can be chosen, even though it is always possible locally. This

is equivalent to the earlier statement about T-folds, namely that they have no globally well

defined metric. Hence the above form for HIJ only makes sense locally.

At this point we take a different approach to ref. [1]. Instead of solving the con-

straint (2.4) for X̃ in terms of the other quantities, we will consider the doubled torus

as a constrained Hamiltonian system. In particular, we will determine the class of the

constraint we have here, and then use methods from constrained Hamiltonian dynamics to

quantize on the constrained surface.

– 5 –
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2.2 Hamiltonian and constraint analysis

We can write the total Lagrangian (2.2) in a more compact form as

L =
1

2
gµν q̇µq̇ν + q̇µjµ − V [q] (2.9)

where the indices µ = I, n, we define qI = XI , qn = Y n and q̇µ ≡ ∂τ qµ. The metric is

gµν =

(

HIJ AIn

AJm Gmn

)

(2.10)

The source terms jµ are given by jI = ÃInY ′n, jn = −ÃInX ′I +BnmY ′m, and the potential

is V [q] = 1
2gµνq′µq′ν , where q′µ ≡ ∂σqµ.

The conjugate momenta are πµ = gµν q̇ν+jµ. More explicitly, the conjugate momentum

of XI is

πI =
∂L

∂ẊI
= HIJẊJ + AInẎ n + ÃInY ′n

and the conjugate momenta of Y n is

πn =
∂L

∂Ẏ n
= GmnẎ m + AInẊI − ÃInX ′I + BnmY ′m

This allows us to calculate the Hamiltonian density, H. We find,

H = πµq̇µ −L

=
1

2
gµν(πµ − jµ)(πν − jν) +

1

2
gµνq′µq′ν (2.11)

Here we see that the Hamiltonian is only well-defined if gµν is invertible. Note that HIJ

and Gmn being invertible do not guarantee that gµν exists. However, for our analysis we

will require gµν to be invertible.

We now discuss the constraint which we want to impose on this Hamiltonian system.

Recall that the constraint (2.4) is

?P I = SI
JP J + LIJJJ

Writing it in its two components gives

Φ−
1 = Pτ − SPσ − LJσ = 0

Φ−
2 = Pσ − SPτ − LJτ = 0

where we are omitting I, J indices for brevity. Taking sums and differences of these two

equations, one finds
1

2
(1 ± S)(Pτ ∓ Pσ) =

1

2
L(Jσ ∓ Jτ )

Now since S2 = 1 and TrS = 0, this means that (1±S)/2 are projectors onto two orthogonal

n-dimensional subspaces. Therefore, the constraint is forcing half of the XIs to be purely

left moving, and half to be purely right moving.
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In fact, using S2 = 1 and SL?J = −LJ , one finds Φ−
2 = −SΦ−

1 and so we can take Φ−
1

as our only primary constraint. Using the consistency conditions one finds we can rewrite

Φ−
1 as follows,

Φ−I
1 = HIJ(πJ − LJKPK

σ )

where πJ is the conjugate momentum for XJ defined above. Therefore, our primary con-

straint can be taken to be in the form

Φ−
I ≡ πI − LIJX ′J (2.12)

We now calculate the Poisson bracket of the constraint Φ− with various other quanti-

ties. This will allow us to determine whether there are secondary constraints and the Dirac

class of the constraints. Recall that the canonical Poisson brackets are

{

XI(σ), πJ (σ′)
}

PB
= δI

Jδ(σ − σ′)

{

Y n(σ), πm(σ′)
}

PB
= δn

mδ(σ − σ′)

We consider the time evolution and closure of the constraint. We find,

{

Φ−
I (σ),

∫

σ′

H
}

PB

= ∂σ(−LIJHJKΦ−
K) ' 0

{

Φ−
I (σ1),Φ

−
J (σ2)

}

PB
= −2LIJδ′(σ1 − σ2)

This means that there are no secondary constraints and our constraint, Φ−
I , is second class.

By imposing it we can safely reduce our theory on the constrained phase space Φ−
I = 0

leaving no other symmetry or gauge freedom. On that surface the dynamics are described

by the Dirac bracket,

{A,B}D = {A,B}PB −
∫

σ,σ′

{

A,Φ−
I (σ)

}

PB
GIJ(σ, σ′)

{

Φ−
J (σ′), B

}

PB

where

GIJ(σ, σ′) =
{

Φ−
I (σ),Φ−

J (σ′)
}−1

PB
= −1

4
LIJ

(

ε(σ − σ′) − ε(σ′ − σ)
)

and ε is the Heaviside step function. We find the following Dirac brackets,

{

XI(σ),XJ (σ′)
}

D
= −1

4
LIJ

(

ε(σ − σ′) − ε(σ′ − σ)
)

{

XI(σ), πJ (σ′)
}

D
=

1

2
δI
Jδ(σ − σ′)

{

πI(σ), πJ (σ′)
}

D
=

1

2
LIJδ′(σ − σ′)

Moreover, we can define the rotated coordinates Φ+
I = πI +LIJX ′J , and the Dirac brackets

of Φ±
I are given by

{

Φ−
I (σ), A

}

D
= 0

{

Φ−
I (σ),Φ+

J (σ′)
}

D
= 0

– 7 –
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{

Φ+
I (σ),Φ+

J (σ′)
}

D
= 2LIJδ′(σ − σ′)

where A is any quantity. The coordinates Φ+
I can be thought of as tangent to the constraint

surface, Φ−
I = 0. In terms of the coordinates Φ±

I , the Hamiltonian can be written as

H =
1

2
gµνZµZν − 1

4
HIJΦ+

I Φ+
J +

1

4
HIJΦ−

I Φ−
J +

1

2
GmnY ′mY ′n (2.13)

with ZI = Φ+
I − ÃInY ′n, Zm = πm −BmnY ′n. Notice that Φ− only appears quadratically.

This will be important later.

3. Bosonic orbifold

In this section we quantize a simple example of a T-fold from the doubled, constrained

Hamiltonian perspective. In the non-doubled language the T-fold we are interested in

has a S1 fibre over an S1 base, with a T-duality acting on the fibre as one traverses the

base. First, we describe the doubled description of this background, including the relevant

orbifold; then we discuss how to implement the Dirac brackets quantum mechanically.

4πRy2πRy0

3.1 The setup

In the doubled language our T-fold corresponds to a T 2 fibred over S1. We take the

coordinates on the doubled fibre to be X1,X2, while Y will be the coordinate on the base

S1. As one traverses the base S1 the fibre undergoes a monodromy transformation, where

the monodromy is the only non-trivial element of O(1, 1; Z). From the non-doubled point

of view, this corresponds to ordinary T-duality on an S1 fibre, i.e. R → R−1. As we will

see, the monodromy will act naturally on the doubled coordinates. Moreover, it constitutes

a geometric transition function for the doubled torus.
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So locally our background looks like

N × S1 × T 2

where N is taken to be some flat manifold with coordinates Y a. For simplicity, we turn all

B fields off. That is, we set

AmI = ÃmI = Bmn = 0

and also require no Y dependence

∂nHIJ = ∂nGmn = 0

where Y m = (Y a, Y ).

We now construct the orbifold using the following identifications.

XI → M I
JXJ

Y → Y + 2πRy

Y a → Y a

where Y is the coordinate on a circle with radius 2Ry (i.e. Y ≡ Y + 4πRy), so this

corresponds to a half shift around the circle. Therefore, our orbifold is of order 2. The

associated transformation for the metric HIJ is

H → (M−1)T HM−1

Using the coset form for the metric H, we have

H =

(

R2 0

0 R−2

)

where R is the radius of the original S1 fibre (in the non-doubled picture). Here the

monodromy matrix M ∈ O(1, 1; Z) ⊂ GL(2; Z) will be the only non-trivial possibility,

namely M I
J = LIJ :

M =

(

0 1

1 0

)

(3.1)

Therefore, using the transformation rule for H, we see that our monodromy corresponds

to

R → 1

R

which is what we want.

3.2 Equations of motion

We now consider this particular doubled torus orbifold from the point of view of the

constrained Hamiltonian system. Recall that we began with phase space (XI , πI , Y
n, πn)

but on the reduced surface Φ− = 0, so the phase space is (Φ+
I , Y n, πn). Henceforth we put

– 9 –
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Φ−
I = 0 and use the symbol ΦI for Φ+

I . From (2.13) the Hamiltonian is

H =
1

2
gµνZµZν − 1

4
HIJΦIΦJ +

1

2
GmnY ′mY ′n

with ZI = ΦI , Zm = πm here. The non-trivial Dirac brackets are

{

Y n(σ), πm(σ′)
}

D
= δn

mδ(σ − σ′)
{

ΦI(σ),ΦJ (σ′)
}

D
= 2LIJδ′(σ − σ′)

The equations of motion ḟ =
{

f,
∫

σ′ H(σ′)
}

D
are

Φ̇I = LIJHJKΦ′
K (3.2)

d ? dY = d ? dY a = 0 (3.3)

Note that the equation of motion for ΦI is different from equations of motion one would

obtain from the doubled torus Lagrangian. This is because we are now considering dynam-

ics on the constrained surface. We can solve (3.2) by diagonalising LH−1 = ST into ±1

eigenspaces.

ST = LH−1 =

(

0 R2

R−2 0

)

Then we obtain the following solution for ΦI ,

ΦI(σ, τ) = Φ0I + Φ
(+1)
I (σ+) + Φ

(−1)
I (σ−)

where Φ0I is constant, and Φ
(±1)
I are ±1 eigenvectors of ST . The periodicities of Φ

(±1)
I (σ±)

will be determined by the particular boundary conditions we choose. Note that ΦI will not

have any linear terms in σ±. This is because ΦI = ΠI + LIJX ′J and both ΠI and X ′J are

periodic.

The solution for (3.3) is

Y =YR(σ−) + YL(σ+)

YR(σ−) =
1

2
y0 + pRσ− +

1√
2

∑

k 6=0

ibk

k
e−ikσ−

YL(σ+) =
1

2
y0 + pLσ+ +

1√
2

∑

k 6=0

ib̃k

k
e−ikσ+

(3.4)

In the next section we will use the boundary conditions for Y to determine a quantization

rule for pL and pR. Similarly, solving (3.3) for the rest of the coordinates, Y a, one obtains

Y a = ya
0 + paτ +

1√
2

∑

k 6=0

iba
k

k
e−ikσ−

+
1√
2

∑

k 6=0

ib̃a
k

k
e−ikσ+

(3.5)

For the orbifold we are interested in here, we can distinguish two twisted sectors.

These sectors will give us the boundary conditions we need to fix the solutions ΦI and Y

completely. Sector I has

ΦI(σ + 2π) =ΦI(σ)

– 10 –
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Y (σ + 2π) =Y (σ) + 4πRym m ∈ Z

Sector II has

ΦI(σ + 2π) =MI
JΦJ(σ)

Y (σ + 2π) =Y (σ) + 2πRy(2m + 1) m ∈ Z

So our two sectors are distinguished by whether we shift an odd or even multiple of 2πRy

around the base circle. We will now consider each of these sectors in turn.

3.3 Sector I

We have the boundary conditions

ΦI(σ + 2π) = ΦI(σ)

Y (σ + 2π) = Y (σ) + 4πRym m ∈ Z

From these boundary conditions we see that Φ±
I (σ±) are periodic functions. Therefore, the

solution for ΦI is

ΦI(σ, τ) =

(

q1

q2

)

+

(

R

R−1

)

∑

k 6=0

ãke
−ikσ+

+

(

R

−R−1

)

∑

k 6=0

ake
−ikσ−

(3.6)

where the vectors

e±(R) ≡
(

R

±R−1

)

are the ±1 eigenstates of ST . The constants q1, q2 are related to the winding and mo-

mentum quantum numbers that would appear in the conventional non-doubled formalism.

In appendix B we show that q1, q2 obey the quantization condition q1q2 = 2mn, where

m,n ∈ Z.

We now turn to the boundary conditions for Y . The solution for Y is given in (3.4),

and the boundary conditions give

pL + pR ∈ 1

2Ry
ny ny ∈ Z

pL − pR ∈ 2Rywy wy ∈ Z

Now we are ready to quantize ΦI , Y
a, Y . We will begin with Y m = (Y a, Y ), m =

0, . . . 24 with Y 24 ≡ Y . For our background we have πn = ηnmẎ m, and we want to impose

the following bracket as an operator relation,

{Y m(σ, τ), πn(σ′, τ)} = δm
n δ(σ − σ′)

By replacing {, } → −i[, ] we obtain the following commutation relations for the modes

associated to Y m,

[bm
k , bn

l ] = kδk+lη
mn [b̃m

k , b̃n
l ] = kδk+lη

mn [bm
k , b̃n

l ] = 0 (3.7)
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Now we consider ΦI . We have the following Dirac brackets,

{

ΦI(σ, τ),ΦJ (σ′, τ)
}

D
=2LIJδ′(σ − σ′)

Replacing {, }D → −i[, ] one arrives at the following

[ak, al] = kδk+l [ãk, ãl] = kδk+l [ak, ãl] = 0

The Hilbert space for this sector, denoted by H(+), will be built on a vacuum |0 > that is

invariant under the monodromy, i.e. M |0 >= |0 >. The states we construct will be “off-

shell” since we haven’t yet imposed physical state conditions. We decompose the Hilbert

space for this sector into eigenspaces H±
(+) associated to eigenvalues ±1 under the orbifold

action, M . Under M we have ΦI → MI
JΦJ , so using the explicit form for M given

in (3.1) this corresponds to the following action on the eigenvectors which appear in the

decomposition (3.6):

e±(R) −→ ±e±(R−1)

together with q1 ↔ q2. Therefore, the associated action on the modes is

ãk 7→ ãk, ak 7→ −ak

As explained in the recent paper ref. [15], the correct action of T-duality on states involves

a non-trivial phase. This can be shown by considering the OPE of two +1 T-eigenstates

and requiring that no −1 eigenstates appear on the right hand side [15]. In our doubled

language the correct action of T-duality is

T |q1, q2 >= (−1)
q1q2

2 |q2, q1 > (3.8)

This phase is essential for modular invariance of the resulting partition function, as we will

see. Hence the Hilbert space for the non-trivial fibre bundle part of the space-time splits

up into H(+) = H+
(+) ⊕ H−

(+), where

H±
(+) =







N
∏

i=1

a−ni

∏

j,k,l

ã−mj
b−rk

b̃−sl

(

|q1, q2;ny, wy > ±(−1)N+ny+
q1q2

2 |q2, q1;ny, wy >
)







Note that the factor of (−1)ny is due to the Y -shift in our orbifold. See appendix B for

arguments which lead to the quantization rule q1q2 = 2mn.

Before we move on to sector II we point out a few interesting features. Firstly, we only

have one set of left-moving modes and one set of right-moving modes from ΦI(σ, τ). This

means that there is no need to make a choice of polarization for our quantum mechanical

states. This is in contrast to the Lagrangian formulation [1], where classically a polarization

must be chosen to make contact with the non-doubled formulation. Here we do not need

to choose polarization because we have moved to the constrained surface in phase space.
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Secondly, we notice that our orbifold looks very similar to the interpolating orbifolds

considered in [11, 15]. This suggests that the doubled torus formalism is equivalent to the

conventional non-doubled formulation of these backgrounds. However, we must work out

the precise details since we are quantizing Φ, not X, and so there may be differences in,

for example, the physical state conditions or the partition function.

3.4 Sector II

In this sector we have the boundary conditions

ΦI(σ + 2π) = MI
JΦJ(σ)

Y (σ + 2π) = Y (σ) + (2m + 1)2πRy m ∈ Z

The solutions for Y and Y a are unchanged from sector I and are given in (3.4)-(3.5).

However, the quantization conditions for pL, pR are now

pL + pR ∈ ny

2Ry
ny ∈ Z

pL − pR ∈ Ry(2wy + 1) wy ∈ Z

due to the new boundary conditions on Y . The oscillator algebras for the modes associated

to Y and Y a are unchanged from sector I and are given in (3.7). We now turn our attention

to ΦI . The solution for ΦI can still be written as

ΦI = Φ0I + e+(R)f(σ+) + e−(R)g(σ−)

but now the boundary conditions imply that f is periodic while g is anti-periodic. There-

fore, ΦI can be expanded in modes as

ΦI(σ, τ) =

(

q

q

)

+ e+(R)
∑

k 6=0

ãke
−ikσ+

+ e−(R)
∑

k∈Z+ 1

2

ake
−ikσ−

where now the boundary conditions for this sector force the constant term Φ01 = Φ02 = q.

The quantization condition on q is

q =
1√
2

(

n − 1

2

)

, n ∈ Z (3.9)

This condition is chosen so that level matching in this sector makes sense [15] (see next

section). We will prove this is the correct quantization in appendix B.

Again we want to impose the following (Dirac) bracket as an operator relation for the

modes,

[ΦI(σ, τ),ΦJ (σ′, τ)] = 2iLIJδ′(σ − σ′)

Note that δ′(σ − σ′) cannot simply be periodic since this will not be compatible with the

monodromy transformations as σ → σ + 2π. To get a correct global statement we should

replace the right hand side of the bracket with the monodromy invariant

2iLIJδ′(σ − σ′) = i

(

R2 [δ′2π(∆σ) − δ′4π(∆σ)] δ′2π(∆σ) + δ′4π(∆σ)

δ′2π(∆σ) + δ′4π(∆σ) R−2 [δ′2π(∆σ) − δ′4π(∆σ)]

)
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where ∆σ ≡ σ − σ′ and δ2π, δ4π are delta functions with period 2π and 4π respectively.

Then the commutation relations for the modes are

[ak, al] = kδk+l [ãm, ãn] = mδm+n [ak, ãm] = 0 (3.10)

where k, l ∈ Z + 1
2 and m,n ∈ Z.

We now discuss the (off-shell) Hilbert space of sector II, which will be denoted by H(−).

First note that we need a twisted vacuum for the right-handed module so that the vacuum

flips sign under the monodromy,3 i.e. M |0 >−= −|0 >−. As in sector I the action of the

monodromy on the modes is

ãk 7→ ãk, ak 7→ −ak

In this sector there is also a non-trivial phase to take into account, namely

T |q >= e−
iπ
8 (−1)q

2 |q > (3.11)

This phase has been proved (in the non-doubled formulation) by Hellerman and Walcher

[15] using OPE relations.

So we have the decomposition of the Hilbert space H(−) = H+
(−) ⊕ H−

(−), into ±1

eigenstates under the monodromy, where

H±
(−) =







1 ± (−1)N+ny+n(n−1)/2

2

N
∏

i=1

a−ni

∏

j,k,l

ã−mj
b−rk

b̃−sl
|q, ny, wy >−







and n ∈ Z is related to q by (3.9). Here the factor of (−1)ny comes from the Y -shift, as

before.

3.5 Physical state conditions

In this section we consider the physical state conditions for the eigenstates we have con-

structed above for H(±). In particular, we will investigate the level matching conditions,

mass formulae and ultimately the partition function for this particular doubled torus setup.

Our goal is to show that quantizing the doubled torus using the constrained Hamiltonian

systems method is equivalent to quantizing the non-doubled torus.

To begin, we will calculate the energy-momentum tensor from the doubled torus La-

grangian (2.9). As usual, this is defined as

Tab =
2√
−h

∂L
∂hab

∣

∣

∣

h=η

where hab is a general world-sheet metric. One finds,

Tab = gµν∂aq
µ∂bq

ν − 1

2
ηabη

cdgµν∂cq
µ∂dq

ν (3.12)

Due to Weyl invariance T00 = T11, so we need only investigate T00 and T01. Written in

phase space, for generic gµν , jµ, one finds

T00 = H
3This is evident in radial quantization and CFT for states to be well-defined.
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T01 = πµqµ′ =
1

4
LIJΦ+

I Φ+
J + πmY m′ − 1

4
LIJΦ−

I Φ−
J

where H is the Hamiltonian (2.13). From the above form it is clear that since the elements

Tab form a closed algebra of constraints, they will also form a closed algebra on the con-

straint surface Φ−
I = 0, since Φ−

I appears quadratically in both T00 and T01. The same

applies if we switch from Poisson brackets to Dirac brackets.

We use the above results to calculate the energy-momentum tensor for the model

we have been dealing with, where jµ = AIn = ÃIn = Bmn = 0. We set Φ−
I = 0 and

denote Φ+
I ≡ ΦI . In terms of the coordinates σ±, the only non-zero components of T are

T±± = 1
2(T00 ± T01), given explicitly by

T±± =
1

8

(

HIJ ± LIJ
)

ΦIΦJ + ∂±Y ∂±Y + ηab∂±Y a∂±Y b

where ∂± = 1
2(∂0 ±∂1). We now substitute in our mode expansions for ΦI , Y, Y m to obtain

Virasoro operators Lm, L̃m. We will do this for both sectors, to obtain physical state

conditions for twisted and untwisted states. We begin with sector I.

Substituting in the untwisted expansions for ΦI , Y, Y a into the above gives the following

expressions for the Virasoro operators:

Lm =
1

2π

∫ 2π

0
eimσ−

T−−dσ−

=
1

2

+∞
∑

k=−∞

(am−kak + bm−kbk + ηabb
a
m−kb

b
k)

where

a0 ≡ 1

2

(q1

R
− q2R

)

, b0 ≡
√

2pR, ba
0 ≡ pa

√
2

(3.13)

Similarly,

L̃m =
1

2π

∫ 2π

0
eimσ+

T++dσ+

=
1

2

+∞
∑

k=−∞

(

ãm−kãk + b̃m−k b̃k + ηabb̃
a
m−k b̃

b
k

)

where

ã0 ≡ 1

2

(q1

R
+ q2R

)

, b̃0 ≡
√

2pL, b̃a
0 ≡ pa

√
2

(3.14)

For the normal ordered zero modes L0 and L̃0 we have

L0 =
1

8

(q1

R
− q2R

)2
+ p2

R +
1

4
(pa)2 +

∞
∑

k=1

(a−kak + b−kbk + ba
−kb

a
k)

L̃0 =
1

8

(q1

R
+ q2R

)2
+ p2

L +
1

4
(pa)2 +

∞
∑

k=1

(ã−kãk + b̃−k b̃k + b̃a
−k b̃

a
k)
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Therefore, the level matching condition is

1

2
q1q2 + p2

L − p2
R + Ñ − N = 0 (3.15)

Note that the first term will be an integer because we have the quantization condition

q1q2 = 2mn, m,n ∈ Z. The mass spectrum formula is

M2 = 2

(

p2
L + p2

R +
q2
1

4R2
+

q2
2R

2

4
+ N + Ñ − 2

)

(3.16)

where the −2 arises as the zero point energy of 24 left-handed and 24 right-handed integer

moded bosonic oscillators, which each contribute −1/24.

From the mass formula we see that the state a−1ã−1|ka >, which corresponds to the

metric component along the fibre, is indeed massless, as one would expect. However, it

belongs to H−
(+), i.e. it has eigenvalue −1 under the orbifold action. Therefore, this state

will be projected out. This is in agreement with refs. [4] and [11], where it is explained

that when there is a non-trivial monodromy the moduli must take values which are fixed

under the action of the monodromy. In our example R → R−1, so the component of the

metric with both legs in the fibre has fixed value 1. In orbifold language this means the

corresponding state, a−1ã−1|ka >, must be projected out, which is indeed what we find

here.

We now consider the energy-momentum tensor and physical state conditions for the

twisted sector II. First note that

T−− =
1

8

( q

R
− qR

)2
+

1

2

( q

R
− qR

)

∑

k∈Z+ 1

2

ake
−ikσ−

+ . . .

That is, T−− has both integer and half integer modes; therefore it will be neither periodic

nor antiperiodic. T++ is periodic and we require T−− to be periodic. This is only satisfied

if R = 1. We put R = 1 from now on. We then obtain the following Lm and L̃m,

Lm =
1

2π

∫ 2π

0
eimσ−

T−−dσ−

=
1

2

∑

k∈Z+ 1

2

am−kak +
1

2

∑

k∈Z

(

bm−kbk + ηabb
a
m−kb

b
k

)

where b0 and ba
0 are related to the Y -momenta via (3.13). Similarly,

L̃m =
1

2π

∫ 2π

0
eimσ+

T++dσ+

=
1

2

+∞
∑

k=−∞

(

ãm−kãk + b̃m−k b̃k + ηabb̃
a
m−k b̃

b
k

)

where ã0 = q, and b̃0, b̃
a
0 are related to the Y -momenta via (3.14). For the normal ordered

zero modes, L0 and L̃0, we have

L0 = p2
R +

1

4
(pa)2 +

∞
∑

k= 1

2

a−kak +

∞
∑

k=1

(b−kbk + ba
−kb

a
k)
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L̃0 =
1

2
q2 + p2

L +
1

4
(pa)2 +

∞
∑

k=1

(ã−kãk + b̃−k b̃k + b̃a
−kb̃

a
k)

The zero point energy for the right-movers will be −1, since we have a contribution of

−1/24 from each of the 24 periodic bosons. On the left hand side the zero point energy

is −45/48 since we have 23 periodic bosons contributing −1/24 and 1 anti-periodic boson

contributing +1/48. So the condition on physical states is

(L̃0 − 1)|phys >= (L0 −
45

48
)|phys >= 0

Hence the level matching condition and mass spectrum formula are given by

1

2
q2 + p2

L − p2
R + Ñ − N − 1

16
= 0 (3.17)

M2 = 2

(

p2
L + p2

R +
1

2
q2 + N + Ñ − (2 − 1

16
)

)

(3.18)

The term −1/16 in the level matching condition looks problematic if the formula is written

in terms of the original zero mode q. Level matching problems are well known to plague

asymmetric orbifolds, and generally one must make some kind of fix to make the level

matching formula sensible. The simplest solution here is to quantize q appropriately so

that the factor of −1/16 cancels. This happens if we choose
√

2q = n − 1/2, n ∈ Z [15].

Moreover, in appendix B we show that this quantization rule follows directly from having

the correct phase (3.11) for the action of T-duality. We now move on to investigate the

partition function for this model. We will see that this quantization for q leads to a modular

invariant partition function.

3.6 The partition function

We now have all the ingredients required to calculate the partition function. We are

particularly interested in the partition function for the non-trivial part of the background,

namely the fibre bundle over S1. Following Flournoy and Williams [11] for the construction

of partition functions for interpolating orbifolds, this should be given by

Z(τ) =
1

2

∑

a,b=0,1

Za
(Φ)b(τ)Za

(Y )b(τ) (3.19)

where Za
b is the partition trace associated to b insertions, with the trace taken over the

Hilbert space Ha, i.e.

Za
b = TrHa(gbqL0qL̃0)

Here g is the orbifold action and q = exp(2πiτ) as usual. In terms of our previous notation

H0 ≡ H(+) and H1 ≡ H(−). So the essential point is that we are multiplying partition traces

for the Φ and Y excitations together, rather than calculating the full Φ and Y partition

functions separately and then multiplying the results. This is because we are dealing with

an interpolating orbifold, rather than a simple product orbifold.
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For the Φ excitations we obtain the following partition traces from the Hilbert spaces

H(±) and L0, L̃0 found previously. For sector I we obtain

Z0
0 =

1

|η|2√τ2ε

∑

m,n∈Z

exp

(

− π

τ2ε2
|m + nτ |2

)

(3.20)

Z0
1 =

(

2η

θ2

)1/2 θ4(2τ)

η
(3.21)

where in both cases we have used the quantization rule q1q2 = 2mn, m,n ∈ Z, which

implies

q1 =
√

2mε, q2 =

√
2n

ε

for some ε ∈ R. For Z0
1 the only states which contribute are those with q1 = q2, which

implies ε = 1 and m = n. For sector II we obtain

Z1
0 =

(

η

θ4

)1/2 θ2(
1
2τ)

η
(3.22)

Z1
1 =

(

2η

θ3

)1/2 θ2(
τ
2 ;−1

4 )

η
(3.23)

For completeness we give the partition traces for the Y excitations. These have been

given in the following compact form in ref. [11],

Za
(Y )b =

∑

n,w∈Z

∑

q=0,1

(−1)bqZ2R

[

2n + q
∣

∣w +
a

2

]

where the definition of Z2R[. . . | . . . ] can be found in the appendix C.

The partition traces for both the fibre and base directions are modular covariant, which

implies the full partition function (3.19) is modular invariant. The modular covariance

properties are

Z(τ + 1)ab = Z(τ)ab−a, Z(−1/τ)ab = Z(τ)b−a

for each a, b. To see these conditions are satisfied one must use some subtle properties of

the θ functions, which are summarised in appendix C. The modular covariance of the Φ

partition traces relies both on the quantization condition for the zero modes and the phase

factors, both of which were introduced in ref. [15]. This improves on earlier work [11, 23]

where this orbifold was not found to be modular covariant. This is due to not having the

“correct” realization of T-duality on the different sectors.

So we have shown that the doubled S1 system, considered as a constrained Hamiltonian

system, is equivalent quantum mechanically to the conventional non-doubled picture. That

is, one obtains the same partition function as obtained in ref. [15]. An important point is

that we have not needed to make any choice of physical states. Even though we haven’t

chosen a polarization it is not surprising that we obtain the same partition function. This

is because T-dual theories have the same partition function.
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4. The supersymmetric doubled torus

An obvious extension to the doubled torus formalism is to make the Lagrangian and the

associated constraint supersymmetric. This will allow more complicated orbifolds (hope-

fully modular invariant, and perhaps realistic) to be considered from the doubled torus

perspective. We have completed the first step, which is simply to find the supersymmet-

ric doubled torus Lagrangian and the relevant constraints. However, we leave the prob-

lem of constructing supersymmetric orbifolds from this perspective to future work. Note

that supersymmetric asymmetric orbifolds corresponding to T-folds have been considered

in [11, 15], but not from the doubled formalism/constrained Hamiltonian point of view.

4.1 Extending the lagrangian

We want to make the doubled torus Lagrangian (2.2) and the constraints (2.4) super-

symmetric. We use the following definitions for superfields, which are supersymmetric

extensions of our X,Y :

X
I = XI + θ̄ψI +

1

2
(θ̄θ)F I

Y
n = Y n + θ̄χn +

1

2
(θ̄θ)φn

or collectively

Qµ = qµ + θ̄ψµ +
1

2
(θ̄θ)fµ

Covariant derivatives are defined as follows

DαQµ = ψµ
α + θαfµ − i(ρaθ)α∂aq

µ +
i

2
∂a(ρ

aψµ)α(θ̄θ)

Our conventions are given in appendix A. We study the following Lagrangian:

L =

∫

d2θ

{

1

2
gµν(Y)D̄QµDQν − 1

2
bµν(Y)D̄Qµ(ρ3)DQν

}

(4.1)

=

∫

d2θ
{1

2
HIJ(Y)D̄X

IDX
J + AIm(Y)D̄X

IDY
m − ÃIm(Y)D̄X

I(ρ3)DY
m

+
1

2
Gmn(Y)D̄Y

mDY
n − 1

2
Bmn(Y)D̄Y

m(ρ3)DY
n
}

(4.2)

where ρ3 = ρ0ρ1 = σ3, the third Pauli matrix4 and bµν has non-zero components bIm =

−bmI = ÃIm and bmn = Bmn. Note that all the spinor indices in the above equations

are contracted. We integrate just the fermionic part, using
∫

d2θ(θ̄θ) = 1, to obtain a

supersymmetric Lagrangian. This gives the correct bosonic Lagrangian upon truncation,

i.e. we obtain the original bosonic doubled torus Lagrangian (2.2).

In more detail, we expand each superfield term in its constituents. For example, the

first term in (4.2) is expanded as follows,

HIJ(Y)D̄αX
IDαX

J =HIJ(Y)ψ̄IψJ + 2HIJ(Y)ψ̄IθF J

4Interestingly, ρ3
· V = − ? V , where V = Vaρa, that is the volume element acts like the Hodge dual.
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− 2iHIJ(Y)(ψ̄Iρaθ)∂aX
J

+ HIJ(Y)
(

ηab∂aX
I∂bX

J + iψ̄Iρa∂aψ
J + F IF J

)

θ̄θ

where

HIJ(Y) = HIJ(Y ) + ∂nHIJ(Y )θ̄χn+
1

2
∂nHIJ(Y )θ̄θφn

+
1

2
∂m∂nHIJ(Y )(θ̄χm)(θ̄χn)

The only terms that contribute to the Lagrangian are those which are coefficients of θ̄θ in

the expansion. Expanding everything in this way and integrating we arrive at the following

supersymmetric Lagrangian,

L =
1

2
gµν∂aq

µ∂bq
νηab − 1

2
bµν∂aq

µ∂bq
νεab

+
1

2
gµνiψ̄µ 6 ∂ψν − i

2
bµνψ̄

µρ3 6 ∂ψν

+
1

2
gρσ,νiψ̄ρρaψν∂aq

σ − 1

2
bνρ,µiψ̄νρ3ρaψµ∂aq

ρ

+
1

2
gµνfµf ν +

(

−1

2
Γµ

ρνψ̄
ρψν − 1

4
Hµ

ρν ψ̄ρρ3ψν

)

gµκfκ

−1

8
gρσ,µν ψ̄µψνψ̄ρψσ +

1

8
bρσ,µν ψ̄ρρ3ψσψ̄µψν (4.3)

Substituting for fµ and after some algebra we obtain the following Lagrangian with auxil-

iary fields solved,

L =
1

2
gµν∂aq

µ∂bq
νηab − 1

2
bµν∂aq

µ∂bq
νεab

+
1

2
gµνiψ̄µ 6 ∇+ψν +

1

4
R−

µνρσψµ
+ψν

+ψρ
−ψσ

− (4.4)

where ∇±
µ V ν = ∇µV ν ∓ 1

2Hµ
ν
ρV

ρ and R−µ
νρσ =

[

∇−
ρ ,∇−

σ

]µ
ν . The operator 6 ∇± =

∂aq
µρa∇±

µ , i.e. the pull-back of ∇± to the world-sheet. One could, of course, now expand

the above Lagrangian in terms of the original data HIJ , AIm, ÃIm, Bmn. We will not do

this here as the expanded form will not be needed in the following.

4.2 Supersymmetric constraints

We now turn to the constraint. The constraint of the bosonic theory (2.4) can be written

equivalently as

Ẋ − LÃẎ = S(X ′ − LÃY ′) (4.5)

an equation that halves the independent vectors {dXI} ∈ X?T (T 2n) on the doubled torus,

where X? is the pull-back of the map X : Σ → T 2n. The fermions in the supersymmetric

sigma model are sections of the X?T (T 2n)⊗
√

K bundle and it is natural to halve the inde-

pendence of them too. Furthermore, the constraints obtained should be supersymmetric.

We find the following constraint sufficient,

DαX
I − LIJÃJn(Y)DαY

n = −SI
J(Y)ρ3

αβ

(

DβX
J − LJKÃKn(Y)DβY

n
)

(4.6)
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We also require the same consistency condition (2.5) in its functional form unchanged, i.e.

AIn(Y) = −HIJ(Y)LJKÃKn(Y)

The constraint in (4.6) reduces to (4.5) upon setting fermions and auxiliary fields to zero.

Now we consider the constraint (4.6) with all fields turned on, at each order in θ.

Firstly, the constant term reads

ψI − LIJÃJn(Y )χn = −SI
J(Y )ρ3ψJ + HIJ ÃJnρ3χn (4.7)

This halves independence of the fermions ψI using an endomorphism of the target tangent

vector bundle. A nice way of writing this is to split the fermions in their chiral parts. Then

the above constraint becomes

(1 + S)ψ+ = (1 + S)LÃχ+

(1 − S)ψ− = (1 − S)LÃχ− (4.8)

These constraints seem very natural as 1
2 (1± S) are projectors. Therefore, half of the ψIs

are constrained to be given in terms of the χms. From the linear terms in θ we obtain the

following constraints:

Ẋ − SX ′ − LÃẎ + H−1ÃY ′ = − i

2
Sχ̄nρ1∂n

(

LÃχ − Sρ3ψ + H−1Ãρ3χ
)

f − LÃφ = −1

2
χ̄n∂n

(

LÃχ − Sρ3ψ + H−1Ãρ3χ
)

The first equation is clearly the initial bosonic constraint (4.5) on the left hand side,

generalized by the addition of some fermionic terms on the right hand side. In phase space

it can be written in exactly the same way as the original constraint, namely

πI − LIJX ′J = 0

where πI is the canonical momentum associated to XI derived from the supersymmetric

Lagrangian (4.4). The second equation above is automatically satisfied when the auxiliary

fields are put on-shell.

We now turn to the quadratic θ term of the constraint. In particular, we show how

this is automatically satisfied if the constant and linear terms are imposed and conserved

on shell (i.e. the time derivatives of these constraints are also satisfied). First note that we

can collect the equation of motion for X
I in supersymmetric form from (4.1) as

D̄α

(

gIµ(Y)DαQµ − bIµ(Y)ρ3
αβDβQµ

)

= 0 (4.9)

or

D̄α

(

HIJ(Y)DαX
J + AIn(Y)DαY

n − ÃIn(Y)ρ3
αβDβY

n
)

= 0

Similarly the constraint (4.6) can be written as

HIJ(Y)DαX
J + AIn(Y)DαY

n − ÃIn(Y)ρ3
αβDβY

n + LIJρ3
αβDβX

J = CIα = 0 (4.10)
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Note that D̄αρ3
αβDβ = 0 as a consequence of the supersymmetry algebra. Therefore, the

constraint implies the equations of motion for X, in complete analogy with the bosonic

constraint implying the equation of motion for XI [1]. That is, schematically we have

CI
α = 0 ⇒ D̄αCI

α = 0 ⇔ eom(X)

By writing the constraint expansion as

CI
α = CI(0)

α + θ̄βC
I(1)
αβ +

1

2
(θ̄θ)CI(2)

α

we can show how

CI(0)
α = 0 on shell

C
I(1)
αβ = 0 on shell =⇒ CI(2)

α = 0

D̄αCI
α = 0 eom for X

I

Thus our supersymmetric constraint (4.6) makes sense. That is, it halves the fermionic

and bosonic degrees of freedom, without imposing extra unphysical constraints. The two

constraints arising from (4.6) are thus

πI − LIJX ′J = 0 (4.11)

(1 + ρ3S)I
JgJµψµ = 0 (4.12)

where the first equation is our original bosonic constraint plus corrections.

5. Conclusion

In this paper we have shown that by applying methods from constrained Hamiltonian

systems one finds that the doubled torus system is equivalent quantum mechanically to the

non-doubled system, at least for the simple example we have worked out here. Previously,

this equivalence was only established classically, and these methods had not been applied.

The doubled torus system proposed by Hull [1] is a constrained Lagrangian system,

and the natural formalism for understanding these systems is the methods of constrained

Hamiltonian systems, where the dynamics is considered on the constrained surface. There-

fore, our work is the natural extension of ref. [1] where the Lagrangian formalism was used.

By moving to phase space, and defining a Poisson structure, we find that we do not need to

choose a polarization for our new variables Φ+, and we construct a polarization invariant

Hilbert space. Making use of the results of ref. [15] for the action of T-duality on states,

we find that our Hilbert space leads to a modular invariant partition function, which is

exactly the same as that of the non-doubled theory. This is not surprising since T-dual

theories should have the same Hilbert space and partition fucntions, and the doubled torus

is, in some sense, the set of all T-duals of a given T-fold.

Note that although we have not needed to choose a polarization, if we wanted to

interpret our constrained Hamiltonian as a sigma model without constraints, this would
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involve choosing a polarization for Φ+. In particular, one would need to choose which of

the Φ+ variables are the momenta.

The zero mode quantization is very interesting. In particular, we show that knowing

the phase [15] in the action of T-duality leads to the correct zero mode quantization. Our

construction for proving this quantization is an orbifold one, as opposed to a more general

Wilson line theory such as those proposed in ref. [15].

The final part of our paper deals with constructing a consistent supersymmetric exten-

sion to the doubled torus formalism. This involves making the constraint supersymmetric,

and then checking that the superfield constraint does not impose too many restrictions on

the constituent fields, which would be unphysical. Surprisingly, the constraints turn out

to be very simple, both in the superfield language, and when expanded out as coefficients

of θ. Our final result is that we have n bosonic constraints, which contain the original

constraint plus fermionic corrections, and n new fermionic constraints.

The doubled torus system is a tractable example of a constrained Hamiltonian system

because its Dirac brackets are very simple, allowing us to implement Dirac bracket quanti-

zation, at least for the simple flat background we have considered. For curved backgrounds

this is generally not possible and one must use a more complicated method of quantiza-

tion, such as that used in ref. [29]. In the supersymmetric case we find that everything is

very similar to the bosonic case, and all of the constraints are second class. It would be

interesting to investigate the quantization of the supersymmetric doubled torus and con-

sider associated asymmetric orbifolds. Note that although we have only considered a very

simple example of a T-fold, we expect other examples to follow through in the same vein,

and to also display quantum mechanical equivalence between the doubled and non-doubled

formulations.
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A. Conventions

Our worldsheet metric has signature (+,−). For the Clifford algebra we define {ρa, ρb} =

2ηab, where η is the flat metric. Whenever needed we will use the representation

ρ0 =

(

0 −i

i 0

)

ρ1 =

(

0 i

i 0

)

In 1+1 dimensions one has the choice of Dirac, Majorana, Weyl or Majorana-Weyl spinors.

We choose to work with real Majorana spinors.
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Since we are considering N = 1 supersymmetry on the worldsheet, our superfields will

involve one Majorana spinor parameter θα, Grassmann odd in nature. The supercharges

are defined as follows

Qα =
∂

∂θ̄α
+ i(ρaθ)α∂a

Q̄α = (Q∗ρ0)α = − ∂

∂θα
− i(θ̄ρa)α∂a

{Qα, Qβ} = −2i(ρaρ0)αβ∂a

where θ̄α = θβρ0
βα as usual. We introduce the super-derivatives

Dα =
∂

∂θ̄α
− i(ρaθ)α∂a

D̄α = (D∗ρ0)α = − ∂

∂θα
+ i(θ̄ρa)α∂a

{Dα,Dβ} = 2i(ρaρ0)αβ∂a

For these we use the fact that (ραθ)α = (θ̄ρa)α and ( ∂
∂θα ) = − ∂

∂θ̄α . Note that the super-

derivatives anti-commute with the charges,

{Qα,Dβ} = 0

Our superfields X, Y are supersymmetric extensions of our X, Y :

X
I = XI + θ̄ψI +

1

2
θ̄θf I

Y
n = Y n + θ̄χn +

1

2
θ̄θφn

or collectively

Qµ = qµ + θ̄ψµ +
1

2
θ̄θfµ

The covariant derivative of X is given by

DαX
I = ΨI

α + θαF I − i(ρaθ)α∂αXI +
i

2
∂a(ρ

aψI)αθ̄θ

where we have used the Fierz identity θαθ̄β = −1
2δαβ θ̄θ, which implies the useful relation

θ̄ε1θ̄ε2 = −1
2 ε̄2ε1θ̄θ.

B. Quantization of the zero modes

In this section we describe how to obtain the quantization of the zero modes of ΦI .

First, let’s recall the simple case of a quantum point particle on a circle S1, considered

as an orbifold R/Z. The Hilbert space on R is made up of momentum states |p >p∈R.

Calling the generator of translations t : x → x + 2π, we have that t|p >= exp(i2πp)|p >.

The invariant Hilbert space consists of the projected states
∑

n

tn|p >=
∑

n

exp(in2πp)|p >= δ(2πp)|p >
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which implies that p = 0 mod 1. If for some reason the momentum was initially quantized

in even integers, on the circle the momentum can be further fractionated to take any integer

value. Furthermore, we want the operator exp(ix) to be realised on the Hilbert space and

this will require all integer values of momentum to be taken into account.

Now let’s turn to sector I of our model. The constraint (2.4) halves the physical degrees

of momentum, winding and oscillator modes. Because it is a differential constraint, the

number of zero modes of XI will not be halved. Therefore, we must put in an extra

constraint on XI
0 , so that we have the correct number of degrees of freedom of a string

theory. The natural constraint to implement is

Πi
IX

I
0 = Xi

0, Π̃iIX
I
0 = 0

where Πi
I and Π̃iI are the projectors discussed in our section 2. The indices i correspond

to the physical polarization, and i to the unphysical polarization. From section 2.2 we

have that X and Φ obey the following Dirac bracket,

{

XI(σ),ΦJ (σ′)
}

D
= δI

Jδ(σ − σ′)

Hence, once we quantize, we can extract the following commutator

[Xi
0,Φ0j ] = δi

j

where Φ0j is the “physical” component. Therefore, Φ0i can be thought of as the conjugate

momenta to Xi
0. Hence Φ0i ∈ Z, just as in the case of a quantum point particle on a circle.

For the other polarization, Φ0i, we can use the fact that LIJΦJ ∼ 2X ′I (up to additions

of Φ− which we have set to zero). Therefore Φ0i obtains the quantization from the winding

modes, and we have Φ0i ∈ 2Z.

In matrix form, these conditions can be written concisely as

ΠΦ0 = m, Π̃Φ0 = 2n

where we are now thinking of Φ as a column vector, and m,n ∈ Z. Then using the relation

(Π)T Π̃ + (Π̃)T Π = L

we arrive at the covariant quantization condition

ΦT
0 LΦ0 = 4mn (B.1)

We will now show an alternative derivation of this quantization for Φ0 in sector I of

our T 2 × R × N/Z (plus constraint) model. Then we will use the same method to derive

the quantization rule in sector II. The generator of Z will be our orbifold transformation,

g. The generator g acts like M on the fibre and translates by 2πRy on the base circle. We

write the zero modes as

Φ0 =

(

q1

q2

)
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We have the following action of g on the Hilbert space

g|q1, q2, ny >= exp
(

iπ(ny +
q1q2

2
)
)

|q2, q1, ny >

The factor of exp(iπny) is the usual phase coming from the translation on the circle base.

The phase exp(iπq1q2/2) is known to be the right T-duality realisation for closure of OPEs

in sector I (see eg. [15]). At this stage we don’t restrict the quantization of q1,q2. After

projection with
∑

n gn, the existence of invariant states requires

π
(q1q2

2
+ ny

)

= 0 mod 2π

or for generic ny:

q1q2 = 2mn, m,n ∈ Z

This is precisely the quantization condition (B.1).

We finally turn to sector II. We use the results of [15]. In their paper they solve issues

like modular invariance and level matching for asymmetric orbifolds. Our case is what they

call “tame” and our starting point is the phase of the T-duality. We write the zero mode

as

Φ0 =

(

q

q

)

Our generator acts as

g|q, ny >= exp

(

iπ(q2 − 1

8
+ ny)

)

|q, ny >

Our construction is an orbifold one and we can show modular invariance, level matching

and quantization of zero modes by adopting the above phase. The invariant Hilbert space

requires (for generic ny):

q2 − 1

8
= 0 mod 1

The simplest choice with even spacing of the modes q is then

q =
1√
2

(

n − 1

2

)

(B.2)

where n ∈ Z.

C. Properties of θ functions

The θ functions we use are given by

θ2(τ ; z) =
∑

n∈Z

q
1

2
(n− 1

2
)2eiπ(2n−1)z (C.1)

θ3(τ ; z) =
∑

n∈Z

q
1

2
n2

ei2πnz
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θ4(τ ; z) =
∑

n∈Z

(−1)nq
1

2
n2

ei2πnz (C.2)

where q = exp(2πiτ) as usual. Usually we will take z = 0, and we denote θi(τ ; 0) ≡ θi.

The θ functions can also be written as infinite products as follows,

θ2(τ ; z) = 2ηq
1

12 cos(πz)
∞
∏

n=1

(1 − 2qn cos(2πz) + q2n)

θ3(τ ; z) = ηq−
1

24

∞
∏

n=1

(

1 + 2qn− 1

2 cos(2πz) + q2n−1
)

θ4(τ ; z) = ηq−
1

24

∞
∏

n=1

(

1 − 2qn− 1

2 cos(2πz) + q2n−1
)

(C.3)

where

η(τ) = q
1

24

∞
∏

n=1

(1 − qn) (C.4)

The following modular transformation properties will be useful,

η(τ + 1) = e
iπ
12 η(τ)

θ2(τ + 1; z) = e
iπ
4 θ2(τ ; z)

θ3(τ + 1; z) = θ4(τ ; z)

θ4(τ + 1; z) = θ3(τ ; z) (C.5)

We also derive the identity

√
2θ2

(

τ +
1

2
;−1

4

)

= ei π
8 θ2(τ ; 0) (C.6)

by using the summation definition in (C.1) and pairing positive with negative modes ap-

propriately. This is used to show Z1
0(τ + 1) = Z1

1(τ). We also have the following

transformations,

η

(

−1

τ

)

= (−iτ)
1

2 η(τ)

θ2

(

−1

τ
;
z

τ

)

= (−iτ)
1

2 e
iπz2

τ θ4(τ ; z)

θ3

(

−1

τ
;
z

τ

)

= (−iτ)
1

2 e
iπz2

τ θ3(τ ; z)

θ4

(

−1

τ
;
z

τ

)

= (−iτ)
1

2 e
iπz2

τ θ2(τ ; z) (C.7)

These properties are what is required to show that (3.20)-(3.23) satisfy the correct modular

covariance properties.

For the Y partition traces we need the following expression [11] for Z2R[. . . | . . . ],

Z2R

[

2n + q
∣

∣w +
a

2

]

=

1

|η(τ)|2 exp

[

−πτ2

(

(2n + q)2

4R2
+ 4R2(w +

a

2
)2

)

+ 2πiτ1(2n + q)(w +
a

2
)

]

(C.8)
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